Tasks

Kubernetes v1.12 documentation is no longer actively maintained. The version you are currently viewing is a static snapshot. For up-to-date documentation, see latest version.

Edit This Page

Using a KMS provider for data encryption

This page shows how to configure a Key Management Service (KMS) provider and plugin to enable secret data encryption.

Before you begin

To check the version, enter kubectl version.

FEATURE STATE: Kubernetes v1.12 beta
This feature is currently in a beta state, meaning:

  • The version names contain beta (e.g. v2beta3).
  • Code is well tested. Enabling the feature is considered safe. Enabled by default.
  • Support for the overall feature will not be dropped, though details may change.
  • The schema and/or semantics of objects may change in incompatible ways in a subsequent beta or stable release. When this happens, we will provide instructions for migrating to the next version. This may require deleting, editing, and re-creating API objects. The editing process may require some thought. This may require downtime for applications that rely on the feature.
  • Recommended for only non-business-critical uses because of potential for incompatible changes in subsequent releases. If you have multiple clusters that can be upgraded independently, you may be able to relax this restriction.
  • Please do try our beta features and give feedback on them! After they exit beta, it may not be practical for us to make more changes.

The KMS encryption provider uses an envelope encryption scheme to encrypt data in etcd. The data is encrypted using a data encryption key (DEK); a new DEK is generated for each encryption. The DEKs are encrypted with a key encryption key (KEK) that is stored and managed in a remote KMS. The KMS provider uses gRPC to communicate with a specific KMS plugin. The KMS plugin, which is implemented as a gRPC server and deployed on the same host(s) as the Kubernetes master(s), is responsible for all communication with the remote KMS.

Configuring the KMS provider

To configure a KMS provider on the API server, include a provider of type kms in the providers array in the encryption configuration file and set the following properties:

See Understanding the encryption at rest configuration.

Implementing a KMS plugin

To implement a KMS plugin, you can develop a new plugin gRPC server or enable a KMS plugin already provided by your cloud provider. You then integrate the plugin with the remote KMS and deploy it on the Kubernetes master.

Enabling the KMS supported by your cloud provider

Refer to your cloud provider for instructions on enabling the cloud provider-specific KMS plugin.

Developing a KMS plugin gRPC server

You can develop a KMS plugin gRPC server using a stub file available for Go. For other languages, you use a proto file to create a stub file that you can use to develop the gRPC server code.

Then use the functions and data structures in the stub file to develop the server code.

Notes:

In response to procedure call Version, a compatible KMS plugin should return v1beta1 as VersionResponse.version

All messages from KMS provider have the version field set to current version v1beta1

The gRPC server should listen at UNIX domain socket

Integrating a KMS plugin with the remote KMS

The KMS plugin can communicate with the remote KMS using any protocol supported by the KMS. All configuration data, including authentication credentials the KMS plugin uses to communicate with the remote KMS, are stored and managed by the KMS plugin independently. The KMS plugin can encode the ciphertext with additional metadata that may be required before sending it to the KMS for decryption.

Deploying the KMS plugin

Ensure that the KMS plugin runs on the same host(s) as the Kubernetes master(s).

Encrypting your data with the KMS provider

To encrypt the data:

  1. Create a new encryption configuration file using the appropriate properties for the kms provider:
kind: EncryptionConfig
apiVersion: v1
resources:
  - resources:
    - secrets
    providers:
    - kms:
        name: myKmsPlugin
        endpoint: unix:///tmp/socketfile.sock
        cachesize: 100
   - identity: {}
  1. Set the --experimental-encryption-provider-config flag on the kube-apiserver to point to the location of the configuration file.
  2. Restart your API server.

Verifying that the data is encrypted

Data is encrypted when written to etcd. After restarting your kube-apiserver, any newly created or updated secret should be encrypted when stored. To verify, you can use the etcdctl command line program to retrieve the contents of your secret.

  1. Create a new secret called secret1 in the default namespace: kubectl create secret generic secret1 -n default --from-literal=mykey=mydata
  2. Using the etcdctl command line, read that secret out of etcd:

    ETCDCTL_API=3 etcdctl get /kubernetes.io/secrets/default/secret1 [...] | hexdump -C
    

    where [...] must be the additional arguments for connecting to the etcd server.

  3. Verify the stored secret is prefixed with k8s:enc:kms:v1:, which indicates that the kms provider has encrypted the resulting data.

  4. Verify that the secret is correctly decrypted when retrieved via the API:

    kubectl describe secret secret1 -n default
    

    should match mykey: mydata

Ensuring all secrets are encrypted

Because secrets are encrypted on write, performing an update on a secret encrypts that content.

The following command reads all secrets and then updates them to apply server side encryption. If an error occurs due to a conflicting write, retry the command. For larger clusters, you may wish to subdivide the secrets by namespace or script an update.

kubectl get secrets --all-namespaces -o json | kubectl replace -f -

Switching from a local encryption provider to the KMS provider

To switch from a local encryption provider to the kms provider and re-encrypt all of the secrets:

  1. Add the kms provider as the first entry in the configuration file as shown in the following example.
kind: EncryptionConfig
apiVersion: v1
resources:
  - resources:
    - secrets
    providers:
    - kms:
        name : myKmsPlugin
        endpoint: unix:///tmp/socketfile.sock
        cachesize: 100
    - aescbc:
         keys:
         - name: key1
           secret: <BASE 64 ENCODED SECRET>
  1. Restart all kube-apiserver processes.

  2. Run the following command to force all secrets to be re-encrypted using the kms provider.

kubectl get secrets --all-namespaces -o json| kubectl replace -f -

Disabling encryption at rest

To disable encryption at rest:

  1. Place the identity provider as the first entry in the configuration file:
kind: EncryptionConfig
apiVersion: v1
resources:
  - resources:
    - secrets
    providers:
    - identity: {}
    - kms:
        name : myKmsPlugin
        endpoint: unix:///tmp/socketfile.sock
        cachesize: 100
  1. Restart all kube-apiserver processes.
  2. Run the following command to force all secrets to be decrypted. kubectl get secrets --all-namespaces -o json | kubectl replace -f -

Feedback